830 research outputs found

    Statistical properties of dust far-infrared emission

    Full text link
    The description of the statistical properties of dust emission gives important constraints on the physics of the interstellar medium but it is also a useful way to estimate the contamination of diffuse interstellar emission in the cases where it is considered a nuisance. The main goals of this analysis of the power spectrum and non-Gaussian properties of 100 micron dust emission are 1) to estimate the power spectrum of interstellar matter density in three dimensions, 2) to review and extend previous estimates of the cirrus noise due to dust emission and 3) to produce simulated dust emission maps that reproduce the observed statistical properties. The main results are the following. 1) The cirrus noise level as a function of brightness has been previously overestimated. It is found to be proportional to instead of ^1.5, where is the local average brightness at 100 micron. This scaling is in accordance with the fact that the brightness fluctuation level observed at a given angular scale on the sky is the sum of fluctuations of increasing amplitude with distance on the line of sight. 2) The spectral index of dust emission at scales between 5 arcmin and 12.5 degrees is =-2.9 on average but shows significant variations over the sky. Bright regions have systematically steeper power spectra than diffuse regions. 3) The skewness and kurtosis of brightness fluctuations is high, indicative of strong non-Gaussianity. 4) Based on our characterization of the 100 micron power spectrum we provide a prescription of the cirrus confusion noise as a function of wavelength and scale. 5) Finally we present a method based on a modification of Gaussian random fields to produce simulations of dust maps which reproduce the power spectrum and non-Gaussian properties of interstellar dust emission.Comment: 13 pages, 13 figures. Accepted for publication in A&

    Improving our understanding of the Spitzer Space Telescope's pointing drifts

    Get PDF
    Spitzer observations of exoplanets routinely yield photometric accuracies of better than one part in 10,000. However, the attainable precision is limited in part by pointing drifts, which have the effect of moving the target to less stable or less-well characterized regions of Spitzer’s IRAC detector arrays. Here we examine a large sample of observing sequences in an effort to identify the causes of these pointing drifts. We find that short term and higher order drifts are correlated on various time scales to the temperatures of components in and around the spacecraft bus, and are most likely due to very slight angular displacements of the star trackers. Despite the constraints imposed by a limited pool of targets, such pointing drifts are best mitigated by optimal scheduling, minimizing large and/or lengthy excursions in telescope pitch angle within 24 hours of a high-precision photometry sequence. Such an effort is currently being initiated by the Spitzer Science Center

    Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1

    Get PDF
    One aim of modern astronomy is to detect temperate, Earth-like exoplanets that are well suited for atmospheric characterization. Recently, three Earth-sized planets were detected that transit (that is, pass in front of) a star with a mass just eight per cent that of the Sun, located 12 parsecs away. The transiting configuration of these planets, combined with the Jupiter-like size of their host star—named TRAPPIST-1—makes possible in-depth studies of their atmospheric properties with present-day and future astronomical facilities. Here we report the results of a photometric monitoring campaign of that star from the ground and space. Our observations reveal that at least seven planets with sizes and masses similar to those of Earth revolve around TRAPPIST-1. The six inner planets form a near-resonant chain, such that their orbital periods (1.51, 2.42, 4.04, 6.06, 9.1 and 12.35 days) are near-ratios of small integers. This architecture suggests that the planets formed farther from the star and migrated inwards. Moreover, the seven planets have equilibrium temperatures low enough to make possible the presence of liquid water on their surfaces

    Spitzer/IRAC Observations of the Variability of Sgr A* and the Object G2 at 4.5 microns

    Get PDF
    We present the first detection from the Spitzer Space Telescope of 4.5 micron variability from Sgr A*, the emitting source associated with the Milky Way's central black hole. The >23 hour continuous light curve was obtained with the IRAC instrument in 2013 December. The result characterizes the variability of Sgr A* prior to the closest approach of the G2 object, a putative infalling gas cloud that orbits close to Sgr A*. The high stellar density at the location of Sgr A* produces a background of ~250 mJy at 4.5 microns in each pixel with a large pixel-to-pixel gradient, but the light curve for the highly variable Sgr A* source was successfully measured by modeling and removing the variations due to pointing wobble. The observed flux densities range from the noise level of ~0.7 mJy rms in a 6.4-s measurement to ~10 mJy. Emission was seen above the noise level ~34% of the time. The light curve characteristics, including the flux density distribution and structure function, are consistent with those previously derived at shorter infrared wavelengths. We see no evidence in the light curve for activity attributable to the G2 interaction at the observing epoch, ~100 days before the expected G2 periapsis passage. The IRAC light curve is more than a factor of two longer than any previous infrared observation, improving constraints on the timescale of the break in the power spectral distribution of Sgr A* flux densities. The data favor the longer of the two previously published values for the timescale.Comment: 13 pages, 10 figures, 2 tables, accepted for publication in the Ap

    Using drift scans to improve astrometry with Spitzer

    Get PDF
    The Spitzer Space Telescope Infrared Array Camera (IRAC) is the only space-based instrument currently capable of continuous long duration monitoring of brown dwarfs to detect variability and characterize their atmospheres. Any such studies are limited, however, by the accuracy to which we know the positions and distances to these targets (most of which are newly discovered and therefore do not yet have multiple epochs of astrometric data). To that end, we have begun a new initiative to adapt the astrometric drift scanning technique employed by the Hubble Space Telescope to enhance Spitzer measurements of parallaxes and proper motions of brown dwarfs and other targets. A suite of images are taken with a set of sources scanned across the array. This technique reduces random noise by coaddition, and because each target covers multiple pixels we are able to average over residual instrumental distortion and intra-pixel variations. Although these benefits can be realized with appropriate dithering, scanning is much more effcient because we can take data concurrently with the spacecraft motion, covering many pixels without waiting to reposition and settle. In this contribution we demonstrate that the observing mode works and describe our software for analyzing the observations. We outline ongoing efforts towards simultaneously solving for source position and residual distortion. Initial testing shows a factor of more than 2 improvement in the astrometric precision can be obtained with Spitzer. We anticipate being able to measure parallaxes for sources out to about 50 pc, increasing the volume surveyed by a factor of 100 and enabling luminosity measurements of the young population of brown dwarfs in the β Pictoris moving group. This observing mode will be ready for public use around Winter of 2015

    Commercial-off-the-shelf simulation package interoperability: Issues and futures

    Get PDF
    Commercial-Off-The-Shelf Simulation Packages (CSPs) are widely used in industry to simulate discrete-event models. Interoperability of CSPs requires the use of distributed simulation techniques. Literature presents us with many examples of achieving CSP interoperability using bespoke solutions. However, for the wider adoption of CSP-based distributed simulation it is essential that, first and foremost, a standard for CSP interoperability be created, and secondly, these standards are adhered to by the CSP vendors. This advanced tutorial is on an emerging standard relating to CSP interoperability. It gives an overview of this standard and presents case studies that implement some of the proposed standards. Furthermore, interoperability is discussed in relation to large and complex models developed using CSPs that require large amount of computing resources. It is hoped that this tutorial will inform the simulation community of the issues associated with CSP interoperability, the importance of these standards and its future

    SBCL: A Sanely-Bootstrappable Common Lisp

    Get PDF
    This paper describes the development of an implementation of Common Lisp with the peculiarity that it is bootstrappable neither solely from itself, nor from some other language, but rather from a variety of other Common Lisp implementations. We explain the motivation for this bootstrap strategy, discuss some of the technical details involved in achieving it, and attempt to assess the technical and social effects that it has had on the development of the implementation and on Common Lisp users in general

    Calibration and data quality of warm IRAC

    Get PDF
    We present an overview of the calibration and properties of data from the IRAC instrument aboard the Spitzer Space Telescope taken after the depletion of cryogen. The cryogen depleted on 15 May 2009, and shortly afterward a two-month- long calibration and characterization campaign was conducted. The array temperature and bias setpoints were revised on 19 September 2009 to take advantage of lower than expected power dissipation by the instrument and to improve sensitivity. The final operating temperature of the arrays is 28.7 K, the applied bias across each detector is 500 mV and the equilibrium temperature of the instrument chamber is 27.55 K. The final sensitivities are essentially the same as the cryogenic mission with the 3.6 ÎĽm array being slightly less sensitive (10%) and the 4.5 ÎĽm array within 5% of the cryogenic sensitivity. The current absolute photometric uncertainties are 4% at 3.6 and 4.5 ÎĽm, and better than milli-mag photometry is achievable for long-stare photometric observations. With continued analysis, we expect the absolute calibration to improve to the cryogenic value of 3%. Warm IRAC operations fully support all science that was conducted in the cryogenic mission and all currently planned warm science projects (including Exploration Science programs). We expect that IRAC will continue to make ground-breaking discoveries in star formation, the nature of the early universe, and in our understanding of the properties of exoplanets
    • …
    corecore